illustrated in FIG. 3, the angle 318 formed between the second panel 104 and the third panel 106 may be substantially 135 degrees.

[0086] As illustrated in FIG. 3, a back surface 314 of the first panel 106 may rest on a support surface, such as a table surface, desk surface, a user's hand, or the like. In a particular embodiment, the third panel 106 may be weighted such that in the particular configuration depicted in FIG. 3, the electronic device 101 may be stable when maintained in the thumbing configuration 300 on a surface. As illustrated, in the thumbing configuration 300, the third panel 106 may display a keyboard 316, while the first and second panels 102, 104 may display one or more portions of the graphical user interface, such that a user may have a substantially horizontal keyboard 316, and a conveniently angled and located effective 2-panel display surface formed of the display surface of the first panel 102 and the display surface of the second panel 104. In a particular embodiment, the electronic device 101 may be held in the thumbing configuration 300 by a user such that the keyboard 316 can be actuated by one or more of the user's thumbs.

[0087] Referring to FIG. 4, the electronic device 101 of FIG. 1 in a travel clock configuration is depicted and generally designated 400. The first panel 102 is folded with respect to the second panel 104 along the first fold location 110, at an angle 420 that is less than 180 degrees, and greater than 0 degrees. For example, the angle 420 formed by the first panel 102 and the second panel 104 may be substantially 60 degrees. The second panel 104 is oriented with respect to the third panel 106 along the second fold location 112 at an angle 422 that is greater than 90 degrees and less than 180 degrees. As illustrated, the angle 422 along the second fold location 112 may be approximately 135 degrees.

[0088] In a particular embodiment, the travel clock configuration 400 includes a display of clock indicia 418, such as a digital clock indicia or analog clock indicia, at the display surface of the second panel 104. For example, the clock indicia 418 may be an image of a clock face. In a particular embodiment, the display surface of the first panel 102 may be in a powered down configuration, while the display surface 106 of the third panel 106 may display one or more controls typical of a travel clock, such as an alarm set control, a volume control, a radio station tuning control, or other controls (not shown).

[0089] FIG. 5 depicts the electronic device 101 of FIG. 1 in a fully extended configuration 500. The first panel 102 and the second panel 104 are substantially coplanar, and the second panel 104 is substantially coplanar with the third panel 106. The panels 102, 104, and 106 may be in contact at the first fold location 110 and the second fold location 112 such that the display surfaces of the first panel 102, the second panel 104, and the third panel 106 effectively form an extended, threepanel display screen. As illustrated, in the fully extended configuration 500, each of the display surfaces displays a portion of a larger image, with each individual display surface displaying a portion of the larger image in a portrait mode, and the larger image extending across the effective threepanel screen in a landscape mode. In a particular embodiment, the panels 102, 104, and 106 may be lockable to be substantially maintained in the fully extended configuration

[0090] FIG. 6 depicts the electronic device 101 of FIG. 1 in a fully extended configuration 600 having a reduced effective display surface on the first panel 102, the second panel 104, and the third panel 106 as compared to FIG. 5. Like FIG. 5, the

panels 102, 104, and 106 are substantially extended, and may be locked into position. However, as illustrated in FIG. 6, an upper and lower surface portion of the portrait mode of each of the panels 102, 104, and 106 may not include the display surface and may instead include one or more hardware features, such as a hinge, microphone, speaker or other hardware features (not shown).

[0091] FIG. 7 shows the electronic device 101 of FIG. 1 in a video conferencing configuration 700. The first panel 102 is coupled to the second panel 104 at the first fold location 110 to be substantially coplanar with the second panel 104. The second panel 104 and third panel 106 are coupled in a folded configuration along the second fold location 112 such that the display surfaces of the second panel 104 and the third panel 106 are substantially proximate to each other, and protected within the interior of the folded configuration. By having the third panel 106 folded over the second panel 104, a back surface 108 of the third panel 106, including a camera 720, is exposed to a user of the electronic device 101. A bottom edge of the third panel 106 includes a microphone 722 and a speaker 724. Although depicted on the bottom edge of the third panel 106, it should be clearly understood that the microphone 722 and the speaker 724 may be located at other positions on the electronic device 101. For example, as will be illustrated with respect to FIG. 32, the microphone 722 may be located at a top of the display surface of the first panel 102, and the speaker 724 may be located at a bottom location of the display surface of the first panel 102. The video conferencing configuration 700 enables a user of the electronic device 101 to view an image on the display surface of the first panel 102 of a participant in the video conferencing call, and to simultaneously be located in a field of view of the camera 720, to capture an image of the user and to provide the captured image of the user to one or more participants of the video conference.

[0092] In a particular embodiment, the electronic device 101 of FIGS. 1-7 uses three separate touch screen displays 102, 104, and 106, that are connected mechanically and capable of folding, that can be used individually or together. This enables multiple user interfaces that can be changed based on the shape or configuration of the electronic device 101. The multiple configurable user interfaces allow the electronic device 101 to be used as multiple types of devices depending on how the electronic device 101 is folded or configured. When using the electronic device 101 a user could start by interacting with a single screen (device completely folded), then have the interface change automatically (based on application or setting) when the electronic device 101 is folded to a different physical configuration. The electronic device 101 may be configured to execute concurrent applications on multiple screens, and to reconfigure applications based on user interaction changing the device configuration. For example, the electronic device 101 may be configured to execute an application at a single display 102, 104, or 106, in one physical configuration, and to execute the application across all three displays 102, 104, and 106 in a different physical configuration.

[0093] For example, when the electronic device 101 is fully folded to the closed position (one screen displayed, such as the fully folded configuration 200 of FIG. 2), the electronic device 101 retains a small form factor and could provide an abbreviated user interface view. Based on user interaction this fully folded configuration could display applications, such as a phone, short-message-service (SMS), a personal digital